
Abstract- A control algorithm for using homogenic EMG to 
control external assisting torque is developed for improving the 
elbow capability of stroke patients.  The control signal to the 
manipulator is the difference between the weighted biceps and 
triceps EMG, so that the system moves with the forearm and 
provides assisting torque proportional to the voluntary effort.  A 
nonlinear damping structure, mimicking physiological damping 
and incorporating the effects of cocontraction, was also included 
in the command for improving joint stability.  The control 
algorithm has the advantage that the control is natural to the 
patient so that the learning process is simple.  We tested the 
control algorithm in 5 normal subjects and 2 stroke patients.  
The results showed that the system could assist the subjects in 
completing work (tracking under loads) with less effort and 
without sacrificing performance.  
Keywords - Elbow, EMG, assisting torque, stroke 

 
I. INTRODUCTION 

 

Hemiparesis, which means partial loss of muscle strength, 
is a common deficit in stroke patients and makes the patients 
less efficient in bearing loads in the affected side.  
Rehabilitation is the first choice for improving the muscle 
strength for patients with milder deficits, while functional 
electrical stimulation offers promise for patients with very 
severe deficits.  For those patients with moderate deficits after 
rehabilitation, currently there was no adequate solution.  We 
developed a system to increase the total torque capability of 
the elbow for this class of patients.  The system was 
controlled by surface EMG of biceps and triceps, so that the 
manipulator arm moves together with the patient�s forearm 
and provides assisting torque in proportion to the difference 
of weighted EMG of biceps and triceps.  Contrary to the 
many attempts in the past that used EMG signal for switch 
control, in the current study, we used EMG signal for 
proportional torque control.  We processed the EMG signal as 
proposed by Hogan [1] first, adaptively lowpass filtered the 
signal, then took the difference between the signals from 
biceps and triceps.  The purpose of adaptive lowpass filtering 
is to perform low pass filtering while retain the fast change at 
the beginning of a movement.  Using the difference of 
weighted EMG eliminated the problem of cocontraction when 
controlling the direction of movement, but it also eliminated 
the advantage of adjusting joint stiffness by cocontraction.  

In order to adjust the joint stiffness according to the 
degree of cocontraction, we added a nonlinear damping as a 
function of the summation of biceps and triceps EMG signal 
and one third power of velocity [2] to the control command.  
The damping effect is relatively larger for small velocity and 
for larger cocontraction.   

In this study, we investigated the performance of this 
assisting device in both normal subjects and stroke patients.   

 
Figure 1.  The schematic diagram of experimental setup 

 
II. METHODOLOGY 

 
Experimental setup 

The overall experimental setup is shown in figure 1.  The 
manipulator is set in position servo mode for measurement in 
isometric contraction and reaching experiments, and set in 
force servo mode for tracking experiments.  The surface 
EMG of both biceps and triceps brachii are sampled in 500 
Hz, bandpassed in 10 and 200 Hz and calculated as Hogan  
[1] proposed:  
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where j is an integer from 1 to n for numbering EMG signal, 
wj is the jth transformed EMG signal, k and n are constants 
and m is the original sampled EMG signal.  In the next step, 
the processed EMG is normalized: 
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where wrel is the processed EMG at the relaxed state.  The 
estimated torque output of the system (Treq) is expressed as 
the difference between the weighted EMG of antagonists with 
an additional term representing nonlinear damping effect: 
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where G and C0 are constants, Ke and Kf are gains of 
processed EMG of biceps and triceps brachii (Me and Mf) and 
hj is the joint angle.  G is used to adjust the gain of this 
assisting device, deciding the ratio of torque produced by the 
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manipulator and muscles.  C0 is used to adjust the 
contribution of nonlinear damping.  Then, Treq is lowpass 
filtered with an adaptive filter [3]:  
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where T is the sampling period, Tcom is the output of this filter 
and z is the variable time constant adjusted according to the 
following formula: 
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where a is a constant, Pj is the output of Treq j going through a 
second order Butterworth lowpass filter.  The purpose of this 
adaptive filter is to remove the noise amplified by difference 
operation, while maintaining quick response at the onset of a 
movement.  We set a = 1, which allows the cutoff frequency 
to change in the range of 0.25 and 2.5 Hz.  Tcom is then fed to 
the manipulator. 
 
Experimental procedure 

Five normal subjects and two stroke patients participated 
in this study.  The subject was in supine position with the 
forearm fixed to the manipulator.  Both the desired and actual 
trajectories were shown on a monitor for visual feedback.  
Before the tracking experiments, isometric contraction 
measurements were performed to estimate Ke and Kf.  The 
maximal voluntary flexion and extension torques are first 
measured.  Since Ke and Kf were complex functions of torque 
amplitude and joint angle, we estimated these two constants 
at four joint angles (0, 45, 90 and 135 degrees, referring full 
extension as 0 degree) and three torque levels (30, 45 and 
60% of maximal voluntary torque) in both flexion and 
extension directions.  Separate maps of Ke and Kf as functions 
of torque and joint angle were constructed by interpolation 
and extrapolation.   

Two sets of experiments were performed.  Reaching 
experiments were designed to investigate the effects of 
nonlinear damping and adaptive filtering and performed only 
in the normal subjects.  In this type of experiments, the 
subjects had to perform isometric step-up, hold and step-
down exertion to the predefined force levels as the trajectory 
shown on the screen.  The gain of the assisting torque was set 
to be 100%, which means the maximal voluntary and 
manipulator torque outputs are equal.  We used integrated 
EMG magnitude (IEMG) and mean path length (MPL) as the 
performance indicators.   IEMG, calculated as the mean of 
rectified EMG), was used to represent voluntary exertion and 
MPL, calculated as the ratio of total path length divided by 
the time spent between the onset of contraction to the settling 
down to the steady state, was used to estimate the smoothness 
of movement.  One set of parameters (C0=0.2 and a=2) was 
chosen for tracking experiments, which was designed to study 
the system performance.   

In tracking trials, the target trajectory consisted of 
segments of ramp-up, hold and ramp-down movements.  The  

Figure 2. Agonist IEMG of normal subjects with and without assisting torque. 

Figure 3. The effects of C0 and a on agonist IEMG. 

 
load that the subject had to bear throughout the trial was set 
to be 40% of the minimum of maximal voluntary torques.  
The gain of the assisting torque was again set to be 100%.  
The tracking trials were repeated for the load in both flexion 
and extension directions.     

 
III. RESULTS 

 
A. Results of reaching experiments 

Fig. 2 shows the agonist IEMG with and without assisting 
torque, which clearly demonstrates that the assisting system 
decreases IEMG, i.e., the voluntary exertion with assisting 
torque.  The subject can also feel the decrease in exertion 
subjectively.  Fig. 3 shows the effects of C0 and a on IEMG.  
C0 has no clear effect on IEM on the chosen range, while 
IEMG increases with a.  Fig. 4 shows the mean path length of 
the reaching experiments.  Smaller value stands for smoother 
movements.  As C0 or a increases, the mean path length  
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Figure 4. Effects of C0 and a on mean path length. 

 
decreases.  Yet, the improvement in smoothness pays price at 
the actual gain in torque capability, i.e., increasing the 
damping effect also increasing IEMG magnitude.  Thus, as a 
compromise, we choose C0=0.2 and a=2 for the next tracking 
experiments. 
 
 
B. Results of tracking experiments 

We used root mean square error (RMS) and Integration of 
square of jerk (ISJ) as the performance indicators.  Fig. 5 
shows the results in normal subjects.  The right group shows 
the results with the load in the flexion direction and the left 
group shows the results with the load in the extension 
direction.  Except for subject N2 with loading in flexion 
direction, applying 100% of assisting torque does not impair 
the performance.  As the assisting torque increases to 150%, 
4/10 and 1/10 cases show performance impairment in RMS 
and ISJ, respectively.  For stroke group, we only apply 100% 
of assisting torque.  The results (Fig. 6) show that the 
performance is comparable in both with and without assisting 
torque.   
 

IV. DISCUSSION 
 

In the current study, we use the static EMG signal to 
construct the gain (Ke and Kf) maps.  Though there were 
evidences that static and dynamic EMG may be different, the 

 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. (a) RMS and (b) ISJ of normal subjects without and with 100% and 

150% assisting torque 

 
designed tracking movements are relatively slow.  We think 
the designed velocity is sufficient for improving the elbow 
functions of stroke patients.  The performance of the current 
control algorithm in movement with higher velocities needs 
further study.   

Figure 6. (a) RMS and (b) ISJ of affected side of stroke patients with and 
without assisting torque. 
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Since the magnitude of surface EMG is influenced by the 
shape of muscle, the contraction of the antagonist also 
changes the agonist EMG.  We find that this effect is not 
negligible.  Though we added a nonlinear damping structure  
which increases damping effect with cocontraction, we found 
in some subjects, cocontraction still leads to instability.  We 
usually have to remind the subjects to relax and to reduce 
cocontraction to obtain better performance. 
  

V. CONCLUSION 
  

The presented results indicate that the developed control 
algorithm can increase the elbow torque output by 100% 
without reducing movement performance.  Currently, we are 
investigating the system performance with assisting torque 
greater than 100% of voluntary muscular torque.   
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